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Abstract--The phenomenon of steady three-dimensional structures transverse to the main flow direction 
in turbulent flows with mainly two-dimensional wall configurations has been investigated. Time invariant 
two-dimensional temperature distributions in an asymmetrically ribbed channel have been detected by 
infrared thermography and are compared with published data of three-dimensional flow structures in 
turbulent boundary layers above a single rectangular cavity and a single rib inside a turbulent channel 
flow, respectively. The periodic length of the observed flow structures corellate quite well among different 
investigations, although methods of investigation and boundary conditions are different. It can be con- 
cluded that such structures in turbulent flows with nearly two-dimensional boundary conditions (large 
aspect ratio of the cross-section) are self-sustaining flow effects. No physical explanation of the origin of 

this phenomenon and of the observed dependencies on the wavelength are available yet. 

1. INTRODUCTION 

Heat transfer at the grooved wall of an asym- 
metrically ribbed channel in turbulent flow was studied 
in an earlier paper [1]. The channel was designed with 
an aspect ratio S /H (span S to clear channel height 
H) of 20 to provide nearly two-dimensional flow. The 
grooved wall was heated electrically to provide con- 
stant heat flux and its surface temperature distribution 
was detected by an infrared camera. 

Steady periodic temperature patterns across the 
width of the channel were detected at the bottom of 
the grooves by Lorenz et al. [1] instead of the one- 
dimensional surface temperature distribution 
(~T/~z = 0) expected in two-dimensional flow. The 
authors had not been able to clarify whether the 
observed two-dimensional temperature patterns were 
caused by accidental disturbances of the flow, for 
example by inhomogeneous inflow conditions of the 
channel, or by self-sustaining permanent periodic 
three-dimensional flow patterns in the groove. 

The phenomenon of time averaged or permanent 
three-dimensional structures of turbulent channel and 
boundary layer flows with approximately two-dimen- 
sional boundary conditions was detected by Maull 
and East [2], Kistler and Tan [3], Dimaczek et aL [4] 
and Werner [5]. All of them considered mainly two- 
dimensional boundary configurations where the flow 
is characterized by a transverse stagnation line con- 
fining a recirculation zone. These investigators studied 
turbulent flows with inserts by different experimental 
methods [oil flow visualization and static pressure 
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measurements [2, 3], infrared thermography (IRT) 
[1], laser-Doppler anemometry (LDA) [4]] or numeri- 
cal methods [large-eddy simulation (LES) [5]]. 
However, all of them detected steady three-dimen- 
sional flow structures with a permanent periodicity 
transverse to the main flow. Most of the investigators 
did not regard three-dimensional structures as their 
main subject. Consequently they did not make it clear 
if the observed structures were caused by external 
disturbances of the flow or if they were generated 
spontaneously (self-sustained) and merely positioned 
by small disturbances of the channel wall structure or 
of the inflow profile. 

Steady three-dimensional flow structures in two- 
dimensional boundaries are well known in laminar 
flows, e.g. B6nard convection [6], Taylor vortices [7] 
and Taylor-G6rtler vortices [8]. The turbulent fluc- 
tuations in turbulent flows damp the driving forces of 
generation of permanent three-dimensional structures 
(e.g. centrifugal force for Taylor and Taylor436rtler 
vortices) so that these phenomena are rarely observed 
in turbulent flows. 

The earlier results of Lorenz et al. [1] detecting 
steady two-dimensional temperature distributions at 
the bottom of the groove in an asymmetrically ribbed 
channel are verified and further investigated in the 
present study. The main concern is to evaluate typical 
periodic lengths of such flow structures and their 
dependencies from the Reynolds number and from 
geometric parameters. In addition to the study pre- 
sented in ref. [1] two other different values of the rib 
to channel height ratio are investigated. The local 
distribution of the heat transfer coefficient in the flow 
direction depending on the Reynolds number and on 
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NOMENCLATURE 

a amplitude of Stanton number V 
variation in the z-direction, equation (10) ~T' 

A wetted surface area of one rib period 
[m 2] x 

b width of heating module [m] y 
cp specific heat capacity [J kg ~ K ~] 
Cp pressure coefficient 
dh hydraulic diameter, equation (5) [m] 
e rib height and cavity depth, 

respectively according to Fig. 9 [m] 
H clear channel height [m] 
L periodic length of steady two- 

dimensional temperature and three- 
~2 

dimensional flow structures in the z- 
direction, respectively [m] 

p pressure [N m- :] c~ 
P length of one rib period in flow 

direction [m] 
q heat flux [W m -e] 

V 
Re Reynolds number, Re = (t/dh)/'v 
s rib width and cavity width, P 

respectively according to Fig. 1 [m] 
S total width of channel and cavity 

respectively, in the z-direction [m] 
Sho~ local Stanton number, air 

St ' lo k = 0qok/r(pcp/d)  fluid 
St Stanton number averaged IRT 

transversally to main flow direction loc 
T temperature [K] max 
a mean flow velocity component in the min 

main flow (x) direction [m s ~] wall 

fluid volume within one rib period [m 3] 
mean flow velocity component parallel 
to the rib in the z-direction [m s ~] 
coordinate in main flow direction [m] 
coordinate normal to plain channel 
wall [m] 
coordinate tangential to plain channel 
wall, transverse to main flow [m]. 

Greek symbols 
~,,~ local heat transfer coefficient 

[Wm-2 K I] 
heat transfer coefficient averaged 
transversally to main flow direction 
[W m-2 K i] 

boundary layer thickness [m] 
wrapped coordinate along the rib 
contour according to Fig. 2 [m] 
kinematic viscosity [m ~ s-~] 
density [kg m-  3] 
vorticity [s ~]. 

Subscripts 
air 
fluid 
measured by infrared thermography 
local 
maximum value 
minimum value 
wall. 

the rib to channel height ratio is not considered here 
(see Lorenz et al. [1]). 

The relevant studies of steady three-dimensional 
structures in turbulent flows with nearly two-dimen- 
sional boundaries by other investigators are compared 
with the present experimental results. The aim of this 
study was to find out if the observed structures are 
self-sustaining flow phenomena in two-dimensional 
boundaries or if disturbances by experimental con- 
ditions or numerical approaches influence the flows. 
In the first case of spontaneous generation a more 
detailed analysis of the phenomenon may help to 
understand better such steady three-dimensional flow 
structures in turbulent flows with nominally two- 
dimensional boundary conditions. 

2. LITERATURE REVIEW 

Several investigations--experimental and numeri- 
c a l ~ x a m i n e  geometrical flow configurations similar 
to those studied in the present experiments. The corn- 

mon features of these configurations (cf. Fig. 1) are a 
stagnation line transverse to the main flow limiting a 
recirculation zone. Detailed informations about the 
configurations, the parameters investigated and the 
methods of investigation are given in Table l. Note 
that the characteristic length s in the flow direction 
represents different geometric lengths depending on 
the geometric configurations considered. 

Maull and East [2] examined a turbulent boundary 
layer above a single rectangular cavity [cf. Fig. l(a)] 
of aspect ratio Sis = 9 (s is the cavity width) with 
Rea = 5 x 10 4 at the front corner of the cavity. The 
width-to-depth-ratio was varied within the range 
0.4 ~< s/e ~< 2. A non-uniform separation line resem- 
bling a regular wave was detected at the bottom of 
the cavity by an oil flow visualization technique. A 
reconstruction of the streamlines near the bottom of 
the cavity is shown in Fig. 2. They measured static 
pressure at two cross-sections at x/s = 0.1 and 
x/s = 0.2, respectively. The detected periodic length 
(in the z-direction) of the measured Cp-distribution 
(cf. Fig. 3) and that of the oil pattern are identical. 
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Fig. l .  Two-dimensional wall configurations considered : (a) 
boundary layer along one single rectangular cavity (Maull 
and East [2] ; Kistler and Tan [3]) ; (b) channel flow with one 
single rectangular rib (Dimaczec et aL [4] ; Werner [5]) ; (c) 
channel flow with periodic rib configuration (Lorenz et al. 

[1] ; this study). 

Maull  and East developed an empirical correlation for 
the periodic length L of  the transverse flow structure 
scaled by the depth e of  the cavity valid for all shapes 
of  cavities examined : 

The proport ion L/e is almost constant for small vari- 
ations of  the Reynolds number of  about  + 20%. The 
number of  periodic ceils of  the flow depends on the 
cavity span, whereas L shows a certain variation. 

Kistler and Tan [3] investigated the same con- 
figuration as Maull  and East. The Reynolds number 
in their experiments was Re~ = 1.5 × 104. The cavity 
of  an aspect ratio of  S/s = 4 varied in the range 
0.3 ~< s/e ~< 6. Kistler and Tan found wavy-like dis- 
tributions of  the pressure coefficient along the z-coor- 
dinate from wall pressure measurements. L/e grew 
when the relative rib thickness s/e was increased. 

Dimaczek et al. [4] examined a fully developed tur- 
bulent flow of water through a channel with a single 
transverse rectangular rib, as shown in Fig. 1 (b). The 
aspect ratio of  their channel configurations 
(0.2 ~< s/e ~< 2, 1.33 ~< Hie <~ 4) was S / H  >1 16. The 
Reynolds number regime was 5 x 103 ~< Ree ~< 5 × 104. 
A crystal violet flow visualization technique yielded 
steady two-dimensional near-wall flow structures, per- 
iodic in the (transverse) z-direction, on the top of  the 
rib, on the front flank, and upstream of the front flank 
up to a streamwise distance of  1.5- e as shown in Fig. 
4. Velocity measurements by means of  L D A  yielded 
a wavy-like distribution of  the time averaged (trans- 
verse) ~ velocity component  in the z-direction (cf. Fig. 
5). Dimaczek et al. did not give a definite value of  the 
proport ion ~/a, but a peak value of  ~/t7 of  ,~0.2 can 
be estimated from their figures. The periodic length L 
does not  change with Re. Dimaczek et al. did not 
present a correlation between the scaled periodic 
length L/e and the parameter s/e but they stated that 
L is of  the order of  0.4" ( H + e )  <~ L <~ 0.8" ( H + e )  for 
all of  the configurations investigated. 

Werner  [5] calculated the velocity field within the 
wall configuration of  Dimaczek et al. by LES. Differ- 
ently from Dimaczek et al., Werner considered one 
configuration, s/e = 1, Hie = 1, at one Reynolds num- 
ber Ree = 4.25 x 104. Werner  described transverse per- 
iodic three-dimensional structures of  the time aver- 
aged flow on top of  the rib, on the front flank, and 
within 1.5" e upstream of the rib (cf. Fig. 6), which 
agrees with Dimaczek et al. Werner described the per- 
iodic length L by 

Table 1. Configuration methods of investigation and parameters of different investigators according to Fig. 1 

Reynolds Aspect 
Reference Configuration number ratio Method of investigation 

Maull and East [2] 0.4 <~ s/e <~ 2 Reo = 5 x 104 (+ 1 x 104) Sis = 9 Oil flow visualization T 

Wall pressure measurement Cp 
Kistler and Tan [3] Re~ = 1.5 × 104 S/s = 4 Wall pressure measurement Cp 
Dimaczek et al. [4] 5 × 103 ~< Ree ~< 5 x 104 S/H >~ 16 Crystal violet method z 

LDA u, v, w 
Werner [5] ReH = 4.25 x 104 S/H = 4 LES u, v, w 

Present study 104 ~< Re2H <~ 105 S/H = 20, 10 

0.3 ~< s/e <~ 6 
0.2 ~< s/e <~ 2 

1.33 <~ Hie <~ 4 
s/e= 1 
H/e= 1 

s/e = 2, pie = 4 
H / e = 2 , 4 , 6  

IRT c~ 
Static pressure distribution Cp 
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Fig. 2. Reconstruction of streamlines on the bottom of a cavity obtained by oil-film-visualization (Maull 
and East [2]). 
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Fig. 3. Static pressure distribution in the z-direction at the bot tom of  a cavity (Maull and East [2]). (A) 
x / s  = 0.1, (B) x,,s = 0.2. 
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Fig. 4. Flow visualization along the wrapped walls of  a single rib (Dimaczec et  al. [4]). 
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Fig. 5. Time averaged transverse velocity component in the 
z-direction in front of a single rib (Dimaczec et al. [4]). 

dence of the scaled transverse periodic length L/e of 
the flow structure on geometric parameters and on 
the Reynolds number is consequently not considered 
principally. Moreover, the authors omit definite state- 
ments concerning the 'amplitudes' of the periodic 
magnitudes. To date, no general overview of inves- 
tigations on this flow phenomenon is known. 

Martinuzzi and Tropea [9] investigated exper- 
imentally the flow around three-dimensional cubic 
obstacles in the same channel as Dimaczek et al. They 
observed horseshoe-like vortices at the front flank of 
the obstacles and interpreted the periodicity observed 

(a) 

(b) 

Fig. 6. Time averaged velocity vectors in the first grid plane next to the wall for a single rib from different 
perspectives (Werner [5]). 

(L)w 1.5~< e ~ 2 .  (2) 
e r n e r  

He conceded that this value of L/e may have been 
affected by the periodic boundary condition in the 
transverse direction combined with a small span (4H) 
of the calculation domain. 

The above-mentioned investigations, except the 
study of Maull and East, mainly consider effects other 
than three-dimensional flow structures. The depen- 

by Dimaczek et al. similarly to the horseshoe vortices 
(cf. Fig. 7). 

Werner imagined a vortex streak at the front flank, 
which is bent by the velocity profile over the edge of 
the rib (cf. Fig. 8), so that an x-component of the 
vorticity vector exists above the rib and a steady per- 
iodic transverse flow structure is generated on top of 
the rib. 

Neither of the models explains sufficiently the physi- 
cal origin of self-sustaining steady three-dimensional 
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f # 

d 
Fig. 7. Model of horse-shoe vortices in front of a single 
rib causing steady three-dimensional flow (Martinuzzi and 

Tropea [12]). 

Re = - -  (3) 
V 

is varied in the range l 0  4 ~ Re <, 105. The hydraulic 
d iameter  dh in equat ion  (3) is defined as 

4V 
d, = - (4) 

A 

where V is the fluid volume within one rib period and 
A is the wetted surface of  bo th  walls. The values of  
the hydraulic d iameter  are 1.733 H for e/H = 1/6, 1.8 
H for e/H = 0.25 and  2 H for e/H = 0.5, respectively. 

The local heat  t ransfer  coefficient at the r ibbed wall 
of  the channel  is defined as 

Wy Wy Wy 

Y1 
Fig. 8. Model of time history of a single vortex-streak with the vorticity co causing steady three-dimensional 

flow (Werner [5]). 

flow structures in turbulent  flows with essentially two- 
dimensional  bounda ry  condit ions.  

3. EXPERIMENTAL SETUP AND MEASURING 
PROCEDURE 

Measurements  of  local heat  t ransfer  and  wall pres- 
sure dis t r ibut ion were carried out  within the asym- 
metrically grooved channel described earlier by Lorenz 
et al. [1] (cf. Fig. 9). With  the same r ibbed wall con- 
f iguration of  s/e = 2 and  p/e = 4, two different values 
of  clear channel  height, H = 4e and  H = 6e, were 
investigated in addi t ion to the one (H  = 2e) examined 
by Lorenz et al. [1]. The aspect ratio is S /H = 7.5, l0 
and 20, respectively, allowing the channel  flow to be 
considered as nearly two-dimensional .  The measur ing 
section is situated downs t ream of  the 27th rib period, 
where the flow is hydrodynamical ly  periodic. The 
Reynolds n u m b e r  

~,o~(~.z)  = ( 5 )  
Tw. , , (L  z)  - T~lu~d 

where ~'fluid iS the mean  tempera ture  of  the air at the 
entrance of  the considered rib period. Cons t an t  wall 
heat flux is provided by an electric-heating module  
which is par t  of  the r ibbed surface. The heated surface 
has a span b = 12" e, being one- thi rd  of  the total  span 
S of  the channel  (cf. Fig. 9) because of  difficulties 
in manufactur ing.  The temperature  Tw~H (~, z) at the 
r ibbed con tou r  is measured by IRT. The experimental  
setup is described in detail in ref. [1]. 

The bulk tempera ture  Tnu~a is calculated by an 
energy balance f rom the fluid tempera ture  at the 
entrance of  the heated test section and  the electric 
power generated by the heat ing module  a long the 
heated section to the considered rib period (cf. Lorenz 
et al. [1]). 

The local S tan ton  number  is defined as 

I~ P ' l '  s ,!: s :! Hecdin 0 module 

Fig. 9. Periodic rib configuration and geometric magnitudes. 

~loc 
Stl~,~ = - - -  (6) 

,Oair Cp air b~ " 

The accuracy of  tempera ture  measurements  was _+ 0.3 
K and  the tempera ture  resolution was 0.07 K. The 
root  mean square error  of  the local S tan ton  n u m b e r  as 
defined by Moffat  [10] was abou t  7%. Static pressure 
dis t r ibut ions were measured at the b o t t o m  of  a groove 
across the channel  to detect three-dimensional  per- 
iodic flow structures assumed to produce the two- 
dimensional  thermal  patterns.  A series of  37 equi- 
dis tant  pressure tappings of  6.5 m m  distance were 
placed in a line t ransverse to the main  flow at ~/s = 2.6 
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\ \ \ \ \ \ \ \ \ ~ \ ~ \ \ \ \ \  A : ; / s  = 0.0 

I X y ~ :~/s = 0.5 

~ C : ~ / s  = 1.5 

D : ~/s = 2.0 

\ \ E : ~Is = 3.0 

Fig. 10. Longitudinal channel section with definition of co- 
ordinate ~ along the ribbed contour. 

(cf. Fig. 10), where the contour-coordinate ~ of the 
ribbed wall is defined by Fig. 10. The position of 
the tappings was chosen because the local pressure is 
relatively high there. A scanning valve connects the 
pressure tappings with a pressure gauge. The dimen- 
sionless pressure coefficient C o is defined as 

2(p --Pref) 
Cp - (7) 

P a i r / ~  2 

where the reference pressure Prer is the pressure mea- 
sured at the plane wall just opposite the front flank of 
the rib at x = 0, y = 0 (cf. Fig. 10). The accuracy of 
the measured C o values is about _+ 2% of the peak Cp 
value for Re >1 50x 103 [11]. 

The absence of any external disturbance that could 
give rise to the observed structures is to be proved to 
validate the experiments. In the first stage of exper- 
iments measurements by a Pitot-tube proved that the 
inlet flows from the nozzle was purely two-dimen- 
sional. A diffusor fitted at the downstream end of the 
channel at a distance of 10p downstream of the first 
and 3p downstream of the last heated rib period did 
not cause any detectable disturbance in the test 
section. The geometric tolerances of the rib con- 
figuration were within the accuracy of manufacturing 
(+_ 0.005" e). External radiation effects were prevented 
by covering the measuring section from outside by 
means of a radiation shield. To prove homogenous 
heating, the heating module was connected for a very 
short time without any forced convection. The infra- 
red images showed a homogeneous temperature 
throughout the heating module, which allowed the 
assumption of good homogenity of heat flux and ther- 
mal capacity. 

The span of the channel was varied in the regime 
3 <~ S/H <. 20 by means of two comb-shaped plates 
of a length of 10 rib periods, fitted into the grooved 
channel. These plates were inserted into the measuring 
section parallelly to the flow at different z-positions to 
vary the effective span of the channel. 

4. R E S U L T S  

The distribution of the Stanton number averaged 
in the z-direction over z2-z~ ~ 4e 

- -  ~ 1 ~z2 

St - PairCpair ~ ~ ~X dz (8) / Z 2 - - Z I  ,jzl 

5 

~ 4 

[r~ 3 

2 

1 ' 

0 a i i 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 
~s  

Fig. 11. Transversally averaged Stanton distribution along 
the ribbed contour (e/H = 0.25, Redh = 60000). 

"?.~ 

0.9 -alC/,S. 

Fig. 12. Two-dimensional Stanton number distribution at 
the top of the rib (e/H = 0.25, Redh = 60000). 

and plotted along the dimensionless contour coor- 
dinate (/s of one rib period is presented in Fig. l 1. 

The infrared images show, however, that the tem- 
perature distribution at the bottom of each heated 
groove is not one-dimensional (depending on (only)  
for any Reynolds number Re >~ 10000. Steady two- 
dimensional temperature patterns periodic in the z- 
direction transverse to the main flow are detected. The 
temperature differences are about 1.5 K along one 
groove across the channel. The periodic patterns can 
only be detected at the bottom of each groove at the 
contour position 2.0 ~< (Is <~ 2.2. The distributions of 
the local Stanton number of the sixth heated period 
for e/H = 0.25 at Re -- 60 000 on the top of the rib 
and at the bottom of the groove are presented in Figs. 
12 and 13, respectively. 

From Fig. 13 one can easily recognize a distribution 
of Shoc wavy-like in the z-direction at the upstream 
side of the bottom of the groove, whereas on the top 
of the rib (Fig. 12) the distribution is clearly one- 
dimensional. The local Stanton number at (/s = 2.1 
varies periodically in the z-direction by approximately 
10% for all investigated values of channel height and 
Reynolds number, see Fig. 14. 

S t l o c . m a  x - -  Stloc,mi n 
a - (9) 

Stloc,min 

Maxima and minima of the local Stanton number in 
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Fig. 13. Two-dimensional Stanton number distribution at 
the bottom of the groove with the period length L between 

two temperature maxima (e/H = 0.25, Redh = 60 000). 
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Fig. 14. Relative variation of local Stanton N umber in the z- 
direction vs Re for different clear channel heights. 

different grooves are not aligned in the streamwise 
direction, but they are casually offset in the transverse 
(z)direction. However,  the periodic distances L in the 
z-direction between two adjacent maxima or two minima 
of  T in one groove are nearly equal for all observed 
grooves of one configuration. The dimensionless period 
lengths Lie observed at various Reynolds numbers are 
of  the same o r d e r  

2.8 ~< ~; ~< 3.3. (10) 
IRT  

-0.02 

-0.03 [ " Ro=6oooo, o~=o.sj 

-0.04 
O 

-0.05 

-0.06 

-0.07~ 1 2 3 4 5 6 7 

z/s 
Fig. 15, Static pressure distribution in the z-direction at 

~/s = 2.6 (x/s = 0.6) at Redh = 110000, e/H = 0.25. 

Fig. 15) shows a wavy-like character with a 'wave- 
length' or period length of  the order of  

~< 2.6. (11) 1.6~< e c/..~=26 

The period lengths of  heat transfer and pressure dis- 
tribution, equations (10) and (11), are quite different. 
Although no evident reason is detectable for this 
observation it is to be pointed out that the values of  
periodic length of  temperature and pressure distri- 
bution, respectively, belong to different ((/s)-coor- 
dinates with different flow regimes inside the groove. 
The vortex structure inside the groove observed by 
flow visualization with helium bubbles [12] is shown 
schematically in Fig. 16. The periodic lengths (Lie)roT 
detected by I RT belong to the regime of the secondary 
vortex ((/s = 2.1), whereas the periodic lengths 
(L/e)~; of the Cp measurements were observed under- 
neath the main vortex ((/s = 2.6). 

5 COMPARISON OF THE PRESENT RESULTS 
WITH RESULTS OF OTHER INVESTIGATORS 

The periodic patterns observed in different inves- 
tigations are in no case absolutely strict. The presented 
values of  periodic lengths can only be regarded as 
typical mean values with certain tolerances. 

The scaled periodic length L/e found by different 
authors (cf. Fig. 1) and from the present study are 

The scaled period length L/e does not depend on the 
Reynolds number. Variation of  the free channel height 
(e/H = 0.16, 0.25, 0.5) does not influence L/e either. 
The influence of  the side walls of  the channel was 
investigated by means of  the two comb-shaped plates 
described above. By dislocating these plates in the z- 
direction the total span of  the working section was 
changed symmetrically and asymmetrically, respec- 
tively. In both cases a variation of  the aspect ratio 
within the range 3 ~< S/H <~ 20 does not change L/e 
substantially, but for asymmetrical variation the ther- 
mal patterns shift according to the shift of  the combs. 

Measurements of  static pressure distribution were 
done for the relative rib height e/H = 0.5 at Re = 60 
000. The transverse distribution of  Cp((/s = 2.6, z) (cf. 

0 
it 

secondary vortex maln vortex 

Fig. 16. Schematic diagram of vortex structure inside the 
groove at Redh = 60000, e/H = 0.5, from flow visualization 

by helium filled soap bubbles. 
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Fig. 17. Scaled period length L/e vs s/e from different inves- 
tigators [2, 3, 5] ; see Table 2. 

plotted vs the characteristic geometric proportion s/e 
in Fig. 17. Note the different definitions of the charac- 
teristic lengths s and e according to Fig. 1. Table 
2 gives a survey of the relevant details necessary to 
evaluate the results. The range of L/e given by Dima- 
czek et aL [4] spreads over the whole axis of the diag- 
ram ; their results therefore cannot be integrated into 
Fig. 17. The results of the present study [cf. equations 
(10) and (11)] indicate the possibility that different 
values of periodic lengths L/e may be efficient at 
different locations (/s of the contour, so that the 
dependence of L/e on s/e may be ambiguous. 

It is conspicuous from Fig. 17 that all period lengths 
observed are of the same order of magnitude. Despite 
the different configurations, boundary conditions and 
methods of investigation of all published data (cf. Fig. 
1), the results correspond rather well. The charac- 
teristic parameters seem to be the rib height e and the 
extension of the recirculation zone in the groove with 
the streamwise length s, respectively. L/e seems to be 
proportional to s/e for the rib or groove configurations 
investigated. 

The statement that Lie is independent of the Reyn- 
olds number and the aspect ratio S / H  (see Maull and 
East [2]) is confirmed by the present study, as Table 2 
shows. The present investigation allows one to sup- 
pose that the periodic length Lie is independent of the 
relative rib height e/H. 

6. DISCUSSION 

Steady three-dimensional flow structures transverse 
to the main flow have been found by different inves- 
tigators in the recirculation zones of cavities or in 
front of single ribs. However, IRT is able to detect 
periodic thermal patterns attributed to such periodic 
three-dimensional flow structures in the present exper- 
iments only at the bottom of the upstream corner 
of the groove (2.0 ~< ~/s <~ 2.2). This is explained as 
follows: the streamwise velocity t7 is low or close to 
zero where two-dimensional temperature patterns are 
observed, whereas the amplitude of the transverse vel- 
ocity ~ connected to three-dimensional flow effects is 
of the same order of magnitude through the whole 
groove. The transverse velocity component ~' influ- 
ences heat transfer sensibly only when it is of the same 
order of magnitude as the local streamwise component 
a [~/~7 ,~ O (1)]. This happens in the zone outside of 
the main vortex (cf. Fig. 16), where two-dimensional 
temperature patterns were observed (2.0 ~< ¢/s <<. 2.2). 

The three-dimensional flow effect described is very 
important for several disciplines. The time averaged 
velocity distribution measured in one longitudinal sec- 
tion of a recirculation zone can be different in other 
parallel sections of equal contour. From this per- 
spective the LDA measurements of Martin and Bates 
[13] in an asymmetrically ribbed channel in the region 
just in front of the rib may fail to represent the com- 
plete flow field. The knowledge of steady three-dimen- 
sional flow structures also has consequences for 
numerical methods. Werner [5] supposed that the vor- 
tex domains near the bottom of the front flank of the 
configuration of Fig. 9(b) are mostly calculated too 
large due to the fact that three-dimensionality is sup- 
pressed by statistical turbulence models. The periodic 
lengths of the three-dimensional flow structures in 
the z-direction are relatively large. This could falsify 
numerical simulations based on symmetric lateral 
boundary conditions instead of perioc lateral boun- 
dary conditions in grooved channels or when the lat- 
eral calculation domain is relatively small. 

Several problems exist, in which steady three- 
dimensional flow structures have some physical 
effects : the three-dimensional structure probably aug- 

Table 2. Legend for results of different investigators according to Fig. 17 

Symbol Reference Measure Results 

X 
[] Ln,i, 
II L,~,x 
O Lrni..mT 
• Lmax,lnT 

m Lmin,Cr 
• Lmax,Co 

Maull and East [2] - r  L/e = 1.2 (1 +s/e) 
- C v L/e  V= f (Re, S/s) 

Kistler and Tan [3] - Cp s/e T ~ L/e T 
Werner [5] -u ,  v, w 1.5 ~< Lie <~ 2.0 

Present study 

-c~ ~ 2.8 ~< L/e <~ 3.3 
-Cp ~ 1.6 <~ L/e <~ 2.6 

L/e ~ f(H/e,B/H>> 1) 
L/e # f(Re) 
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ments the drag of  the flow, which corresponds to a 
larger pressure drop along the grooved channel. 
Three-dimensionality influences heat transfer sensibly 
in regions where local heat transfer coefficients are 
extremely low. This may produce locally increased 
thermal stresses, which may be fatal, for example in 
the cooling of  electronic elements. 

A more detailed knowledge of  the three-dimen- 
sional flow structures could be the key to under- 
standing turbulent flows better. These structures are 
probably produced by instabilities of  turbulent flow 
over mainly two-dimensional obstacles or pertur- 
bations. A non-linear theory of  stability may be 
required to describe these turbulent flows. 

7. CONCLUSIONS 

The observed permanent and periodic two-dimen- 
sional temperature and wall-pressure distributions 
and three-dimensional flow structures in turbulent 
flows with two-dimensional obstacles are all of  the 
same order of  magnitude of  wavelength. This leads to 
the hypothesis that the same physical mechanism is 
responsible for these different phenomena. The 
phenomena are probably not caused but merely sta- 
bilized by accidential disturbations of  the essentially 
two-dimensional boundary conditions. The transverse 
velocity component  parallel to the ribs reaches values 
up to ~'/a = 0.2, whereas the local Stanton number 
varies for about 10% in the z-direction along the 
groove. 

Extensive parameter studies to clarify the observed 
dependencies of  the wavelength of  flow structure from 
the Reynolds number and the characteristic geometric 
parameters do not yet exist. A physical model to 
explain such flow structures and these dependencies is 
also missing. The phenomenon of transverse periodic 
flow structures is supposed to be caused by an insta- 
bility of  the turbulent fluctuations sensible to dis- 
turbances near the stagnation line. F rom this assump- 
tion, the slightly variable wavelength of the structures 
can be understood. The observed independence of  the 
wavelength from the Reynolds number can also be 
explained in this way. If turbulent fluctuations con- 
tribute to the three-dimensional steady flow struc- 
tures, the wavelength is dependent on the degree of  
turbulence ; therefore only a weak dependence on the 

Reynolds number is to be expected. The Reynolds 
number variations in the investigations considered 
here are within one decade, which seems insufficient 
to identify definitely such a dependence. 
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